Dynamics and Excited States of Quantum Many-body Spin Chains with Trapped Ions
نویسندگان
چکیده
Title of dissertation: DYNAMICS AND EXCITED STATES OF QUANTUM MANY-BODY SPIN CHAINS WITH TRAPPED IONS Crystal Rosalie Senko, Doctor of Philosophy, 2014 Dissertation directed by: Professor Christopher Monroe Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology Certain classes of quantum many-body systems, including those supporting phenomena like high-Tc superconductivity and spin liquids, are believed to be fundamentally intractable to classical modeling. Quantum simulations, in which synthetic materials are engineered by inducing well-controlled quantum systems like ultracold atoms to obey many-body Hamiltonians of interest, are a promising new approach to study this type of physics. However, current experiments have not yet simultaneously achieved the system sizes and the level of control necessary to observe and understand novel physics that cannot be classically modeled. In this work, I present several advances toward this ultimate goal of large-scale, highly controllable quantum simulations of many-body spin physics. We simulate long-range Ising and XY spin models in the presence of transverse and longitudinal magnetic fields using chains of up to 18 ultracold Yb ions held in a linear Paul trap, where two hyperfine levels in each ion encode spin-1/2 states. The tunable spin-spin interactions and effective magnetic fields are engineered using laser fields, and the individual spin states are directly imaged with state-dependent fluorescence. The results in this thesis address several of the ongoing challenges in the development of synthetic quantum matter platforms. One such challenge is establishing more flexible capabilities in the sorts of Hamiltonians we can model. By observing suppression of the ground state spin ordering, we have demonstrated our ability to continuously tune the interaction range in a power-law interaction pattern, and hence the amount of frustration present in the spin system. We have additionally begun developing tools to study particles of higher spin, which could eventually be used to create and study topological phases of matter. Another challenge is the necessity of identifying problems that the next generation of experiments, with flexible (but not arbitrary) controls and classically intractable (but not infinitely large) system sizes, can feasibly shed new light on. We have made measurements of how the range of interaction affects dynamics of spin correlations propagating through the chain, and the excellent agreement between our observations and numerical simulations indicate that at larger sizes, our experiment can meaningfully contribute to the open question of the fundamental speed limit on the transfer of information through such a spin chain. Finally, for classically intractable system sizes, it will be crucial to have multiple techniques at our disposal for validating our understanding of the exact microscopic model being implemented. We have developed and demonstrated an MRI-like spectroscopic technique for probing the energies of the many-body Hamiltonian, which serves as a new method for validating quantum simulations of the transverse Ising model. Our experiments can potentially be scaled up in the near future to study fully connected lattice spin models with several tens of spins, where classical computation begins to fail, and the results described in this thesis contribute to the effort to build experiments that can break new ground in the study of quantum many-body physics.
منابع مشابه
Dissipative Quantum Control of a Spin Chain.
A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic limit of tailored nonunitary dynamics. The dynamics require the spectral resolution of the target state, optimized coherent pulses, engineered dissipation, and feedback. As an example, we discuss the preparation of an entangled antiferromagnetic state, and argue that the procedure can be applied to...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملQuantum spin dynamics and entanglement generation with hundreds of trapped ions.
Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional arr...
متن کاملTrapped-ion quantum simulation of tunable-range Heisenberg chains
Quantum-optical techniques allow for generating controllable spin-spin interactions between ions, making trapped ions an ideal quantum simulator of Heisenberg chains. A single parameter, the detuning of the Raman coupling, allows to switch between ferromagnetic and antiferromagnetic chains, and to modify the range of the interactions. On the antiferromagnetic side, the system can be tuned from ...
متن کامل2 Control of Decoherence : Dynamical Decoupling versus Quantum Zeno Effect - a case study for trapped ions
The control of thermal decoherence via dynamical decoupling and via the quantum Zeno effect (Zeno control) is investigated for a model of trapped ion, where the dynamics of two low lying hyperfine states undergoes decoherence due to the thermal interaction with an excited state. Dynamical decoupling is a procedure that consists in periodically driving the excited state, while the Zeno control c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014